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Technology-driven layer-by-layer
assembly of nanofilms

Joseph J. Richardson, Mattias Bjornmalm, Frank Caruso*

BACKGROUND: Over the past few decades,
layer-by-layer (LbL) assembly of thin films
has been of considerable interest because of
its ability to exert nanometer control over
film thickness and its extensive choice of

usable materials for coat-
ing planar and particulate
Read the full article  Substrates. The choice of
at http://dx.doi. materials allows for re-
org/10.1126/ sponsive and functional
science.aaa2491 thin films to be engineered
.................................................. for various applications,
including catalysis, optics, energy, membranes,
and biomedicine. Furthermore, there is now a
growing realization that the assembly tech-
nologies substantially affect the physicochem-
ical properties and, ultimately, the performance
of the thin films.
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ADVANCES: Recent advances in LbL as-
sembly technologies have explored differ-
ent driving forces for the assembly process
when compared with the diffusion-driven
kinetics of classical LbL assembly, where a
substrate is immersed in a polymer solution.
Examples of different assembly technologies
that are now available include: dipping, de-
wetting, roll-to-roll, centrifugation, cream-
ing, calculated-saturation, immobilization,
spinning, high gravity, spraying, atomization,
electrodeposition, magnetic assembly, electro-
coupling, filtration, microfluidics, and fluidized
beds. These technologies can be condensed
into five broad categories to which automa-
tion or robotics can also be applied—namely,
(i) immersive, (ii) spin, (iii) spray, (iv) electro-
magnetic, and (v) fluidic assembly. Many of
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these technologies are still new and are ac-
tively being explored, with research shedding
light on how the deposition technologies and
the underlying driving forces affect the for-
mation, properties, and performance of the
films, as well as the ease, yield, and scale of
the processing.

OUTLOOK: Layer-by-layer assembly has
proven markedly powerful over the past two
decades and has had a profound interdis-
ciplinary effect on scientific research. Scal-
ing up the process is crucial for furthering
real-world applications, and moving forward,
an understanding of how to carefully select
assembly methods to harness the specific
strengths of different technologies has the
potential to be transformative. Comprehen-
sive comparisons between the technologies
still need to be conducted, especially in re-
gard to coating particulate substrates, where
comparisons are limited but crucial for ad-
vancing fundamental research and practical
applications. m
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Layer-by-layer assembly of nanofilms for preparing functional materials. The properties and performance of the resulting films depend on the
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bstrate and layer material choices, as well as the assembly technology.
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MULTILAYER ASSEMBLY

Technology-driven layer-by-layer
assembly of nanofilms

Joseph J. Richardson, Mattias Bjornmalm, Frank Caruso*

Multilayer thin films have garnered intense scientific interest due to their potential
application in diverse fields such as catalysis, optics, energy, membranes, and biomedicine.
Here we review the current technologies for multilayer thin-film deposition using
layer-by-layer assembly, and we discuss the different properties and applications arising
from the technologies. We highlight five distinct routes of assembly—immersive, spin,
spray, electromagnetic, and fluidic assembly—each of which offers material and processing
advantages for assembling layer-by-layer films. Each technology encompasses numerous
innovations for automating and improving layering, which is important for research and
industrial applications. Furthermore, we discuss how judicious choice of the assembly
technology enables the engineering of thin films with tailor-made physicochemical properties,
such as distinct-layer stratification, controlled roughness, and highly ordered packing.

he performance of functional materials is

governed by their ability to interact with

surrounding environments in a well-defined

and controlled manner. Whether harness-

ing photons or electrons, separating out gas
molecules or solutes, or responding to biomol-
ecules or organisms, the environment-material
interface is essential in determining the perform-
ance of the materials in various applications.
Coating technologies provide the means to con-
trol the surface of a material, thus creating com-
posite materials where the interface and the bulk
of the material can, to a large extent, be engineered
and controlled independently.

Layer-by-layer (LbL) assembly is a prevalent
method for coating substrates with functional
thin films. Following early studies that reported
multilayer assembly (7, 2), it is only in the past
two decades that the field has witnessed con-
siderable growth (3). Generally, LbL assembly is
a cyclical process in which a charged material
is adsorbed onto a substrate, and after washing,
an oppositely charged material is adsorbed on
top of the first layer. This constitutes a single bi-
layer with a thickness generally on the order
of nanometers, and the deposition process can
then be repeated until a multilayer film of desired
thickness has been assembled (3). For certain
applications the substrate can then be removed,
yielding freestanding macroscopic films, such as
membranes (4), or freestanding micro- or nano-
scopic films, such as hollow capsules (5, 6). Al-
though electrostatic interactions remain widely
used in facilitating formation of the films, other
molecular interactions (e.g., covalent, hydrogen-
bonding, host-guest) are now well established
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for LbL assembly, with diverse materials (e.g.,
polymers, proteins, lipids, nucleic acids, nanopar-
ticles, suprastructures) used as film constituents
(7). The simplicity, versatility, and nanoscale con-
trol that LbL assembly provides make it one of
the most widely used technologies for coating
both planar and particulate substrates in a di-
verse range of fields, including optics, energy,
catalysis, separations, and biomedicine (Fig. 1A).

The widespread use of LbL assembly in fields
with different standard tools and procedures—
as well as the different processing requirements
associated with substrates such as porous mem-
branes, particles, and biological matter—has led
to the development of a number of LbL assem-
bly technologies. Examples include dipping (2),
dewetting (8), roll-to-roll (9), centrifugation (10),
creaming (11), calculated saturation (72), immo-
bilization (13), spinning (14), high gravity (15),
spraying (I16), atomization (17), electrodeposition
(18), magnetic assembly (19), electrocoupling (20),
filtration (21), fluidics (22), and fluidized beds
(23). These different methods have often been
treated as “black boxes,” where the main focus
has been on what materials are used (the input)
for assembling the thin films (the output), with
little focus placed on the actual assembly meth-
od. However, there is now a growing realization
that the assembly method not only determines
the process properties (such as the time, scalabil-
ity, and manual intervention) but also directly
affects the physicochemical properties of the films
(such as the thickness, homogeneity, and inter-
and intralayer film organization), with both sets
of properties linked to application-specific per-
formance (Fig. 1B).

Unpacking the “black box”

The basis of LbL assembly is the sequential ex-
posure of a substrate to the materials that will
compose the multilayer films. The assembly tech-

nologies used to assemble such films form five
distinct categories, namely: (i) immersive, (ii) spin,
(iii) spray, (iv) electromagnetic, and (v) fluidic
assembly (Fig. 2). These assembly technologies
affect both the process properties and the re-
sultant material properties (Table 1), and there-
fore careful choice of the assembly method can
be crucial for successful application of the assem-
bled films. Furthermore, two main themes can be
identified for current developments in assembly
technologies: The first is the move away from
random diffusion-driven kinetics for layer deposi-
tion, and the second is the advancement from
manual assembly toward automated systems.

Immersive assembly

Immersive LbL assembly, sometimes referred to
as “dip assembly,” is the most widely used meth-
od and the standard that newer technologies are
often compared against. Immersive assembly is
typically performed by manually immersing a
planar substrate into a solution of the desired
material (2, 24, 25), followed by three washing
steps to remove unbound material (26). Partic-
ulate substrates can also be layered using immer-
sion; however, the washing and deposition steps
are generally broken up by centrifugation to pellet
the particles (5, 6, 10). Early studies on using par-
ticles for depositing planar multilayers noted
that, theoretically, any material capable of having
a surface charge (such as metals, nonmetals, or-
ganics, and inorganics) could be applied for grow-
ing multilayers if suitable conditions are used
(2, 24, 27). Further, it was also reported that the
thickness of each layer corresponds to the thick-
ness of the particles being adsorbed (24, 28). Im-
mersive assembly allows for more homogenous
films [when using either particle (27) or polymer
multilayers (3)] in comparison with non-LbL as-
sembly technologies such as gas deposition and
nucleation deposition, making LbL assembly
widely used for thin-film formation.
Improvements in immersive assembly include
speeding up the process by shifting the deposi-
tion Kkinetics away from random diffusion toward
faster Kinetics, such as those arising from dewetting
(8), and by automating labor-intensive steps with
robotic immersion machines (24, 26, 29, 30). The
colloids used for planar assembly in early studies
required only 1 min of immersion for each ad-
sorption step (3I); however, for immersive as-
sembly using polymers, the substrate is ideally
immersed for ~15 min for sufficient layer depo-
sition (25, 26). To reduce the assembly time for
polymers and to allow for the deposition of low-
surface charge and/or small-contact area mate-
rials, solutions doped with organic solvents (e.g.,
dimethylformamide) can be used to eliminate
the need for rinsing and drying steps through
the process of dewetting (8). Dewetting leads to
a ~30-fold reduction in assembly time because
the adsorption process is no longer governed
by diffusion but by evaporation and dewetting,.
Another interesting move away from random
diffusion utilizes polymer solutions that are con-
stantly stirred by magnetic stirrer bars, which
allows for robust layers to be deposited within
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tens of seconds after immersion (32). Instead of
speeding up the adsorption process by using
different adsorption kinetics, handling times
can be decreased by automating the process
(9, 24, 26, 27, 29, 30, 33). One approach to auto-
mation uses a quartz crystal microbalance (QCM)
as a substrate, allowing for layering to be con-
trolled with a computer-monitored feedback
loop (30). QCM enables the layering process to
be based on a fixed mass of adsorbed material
rather than fixed immersion times. Further-
more, the feedback loop allows for precise and
reproducible control over the film growth and
allows for linear film growth to be engineered
from polymer combinations that give nonlinear
film growth using fixed times (30). For fixed-
time immersive assembly, computer-programmed
automated slide stainers can be retrofitted for
automated multilayer assembly, allowing for
agitation and solution exchange during washing
steps (24, 29). A similar, although custom-built,
computer-programmed machine can deposit
~1000 layers of charged colloids onto particulate
substrates (substrates ~100 um in diameter) (27).

Although automation decreases manual in-
volvement, it does not substantially reduce the
overall assembly time, which is why some efforts
have focused on combining faster deposition
kinetics with automated systems. For example,
one commercially available robot uses a rotating
slide holder to speed up the assembly process
(26). This rotation allows for a 3- to 10-fold re-
duction in adsorption times and allows for thicker
films to be prepared using higher rotation speeds.
Roll-to-roll assembly also allows for layering to
be performed faster (by 5- to 10-fold), through
the use of flexible substrates (9). The immersion
time and speed of the rolling process play a large
role in determining the film properties, and the
drying conditions, wettability, and substrate move-
ment speed require optimization to produce films
with similar properties to standard immersive
assembly (9). A further improvement to roll-to-
roll assembly uses a nip-roll technique to pre-
vent excess solution from cross-contaminating
the system, resulting in more homogenous coat-
ings than immersive assembly (34).

Immersive assembly can be performed on par-
ticulate substrates that are too small to sediment
quickly or physically move between solutions,
such as micro- and nanoparticles. The most com-
mon technology for immersive assembly on par-
ticulate substrates is performed by adding polymer
solution to dispersed dense particulate substrates,
pelleting the particles with centrifugation, remov-
ing the supernatant, washing multiple times with
a similar pelleting process, and then repeating
the steps for multilayer growth (5, 6, 10). This
is generally time-consuming and labor-intensive
due to the centrifugation steps, and particles
dense and large enough to be pelleted are
required. However, by using particulate sub-
strates lighter than water (e.g., emulsions),
creaming and skimming cycles can be applied
for washing steps (11), although centrifugation
can also be used to speed up the flotation and
creaming process (35), with lighter emulsions
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capable of creaming in a matter of minutes the surfactants used for emulsion stabilization
rather than hours (36). The use of emulsions (36).

as templates results in thicker films compared The major driving force behind the develop-
with using solid templates, probably due to ment of immersive assembly technologies for
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Fig. 1. Versatility of layer-by-layer assembly. (A) Schematic overview of LbL assembly and (B) an
overview showing that the assembly technology influences film and process properties, as well as
application areas. [lllustration credit: Alison E. Burke and Cassio Lynm]
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particulate substrates is the attempt to avoid
centrifugation, as it can lead to aggregation, is
labor intensive, and is generally difficult to auto-
mate. A simple way to avoid centrifugation is to
remove the need for washing steps. This can be
achieved by adding exact amounts of polymer

A Immersive

Substrate

calculated to saturate the surface of the partic-
ulate substrates (12, 37), rather than the high
concentrations of excess polymer solution gen-
erally used (5, 6, 10). Initially, only two to three
layers could be deposited before the particles
start to aggregate (12), but more layers can be
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Fig. 2. Layer-by-layer assembly technologies. (A to E) Schematics of the five major technology
categories for LbL assembly. [lllustration credit: Alison E. Burke and Cassio Lynm]
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deposited by incrementally measuring the zeta
potential during assembly (37). Additionally,
the use of constant mixing for soft particulate
substrates such as emulsions (38) or sonica-
tion during layer deposition for hard particu-
late substrates like drug crystals (39) reduces
aggregation. By optimizing the protocol, the
saturation method gives a similar shell thick-
ness to centrifugation-based assembly but is
about three times faster (37, 39). This technol-
ogy requires constant monitoring and surface
area calculations to avoid adding excess polymer
and therefore does not reduce manual involve-
ment. A technology that focuses on decreasing
manual involvement and reducing the need for
centrifugation uses particulate substrates immo-
bilized in agarose to convert collections of par-
ticulate substrates into a macroscopic substrate
(33). This macroscopic collection of immobilized
particles can be treated like a planar substrate
and immersed in polymer solutions using a ro-
botic dipping machine, allowing for full auto-
mation during the layering process. Although
this technology generates films roughly half
the thickness of those prepared by conventional
centrifugation-based assembly, probably due to
the impeded diffusion of polymers through the
agarose hydrogel, ~80% of the particles can be
recovered, which is an improvement over the
~90% loss that has been reported for centrif-
ugation-based assembly at high layer numbers
(21, 33).

Due to the ease of use and versatility of mate-
rial and template choice, immersive assembly
has been applied for numerous applications. For
example, light-emitting diodes (LEDs) can be
prepared from immersive assembly on planar
substrates, with the polymer choice and multi-
layer thickness giving control over luminance
and the turn-on voltage (29). Automated roll-to-
roll immersive assembly can be used for deposit-
ing conductive and flame-retardant coatings (34).
Planar substrates coated with particle multi-
layers can be used for the detection of small par-
ticles invisible to the naked eye through color
shifts in the multilayer films (2). Glass slides can
also be coated with particle multilayers for the
preparation of antireflective, antifogging, and
self-cleaning surfaces (24). Fusion microreactors
coated with particles are more conducive toward
reaction (27). Certain particulate substrates easily
allow for the removal of the template particle,
leaving behind hollow multilayer capsules. Sim-
ilarly, drugs themselves can be used as the par-
ticulate templates, with both types suitable for
drug delivery, (5, 6, 33, 38-40).

In summary, immersive assembly is the most
commonly used LbL assembly technology and
the de facto standard against which other tech-
nologies are compared. The simplicity of immers-
ing substrates of almost any shape or size into
containers with layering solution makes this
technology easily accessible. The films produced
have an interpenetrated structure and form
“fuzzy” nanoassemblies that are almost synon-
ymous with LbL assembly (3). Much recent work
has been focused around shorter assembly times
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and automated systems with less manual inter-
vention. For coating particulate substrates, there
has also been considerable interest in technol-
ogies applicable to coating smaller, low-density
particles (such as silica nanoparticles), which
can be difficult to handle with the conventional
centrifugation-based assembly. As immersive as-
sembly typically requires more material than
other technologies, especially to submerge large
substrates on industrial scales, waste can be an

issue, although solutions can be reused as long as
cross-contamination remains low. Immersive as-
sembly has been the workhorse of LbL assembly
and will undoubtedly continue to play an integral
part in the development of new and improved
thin films.

Spin assembly

Layer-by-layer assembly using spin coating (i.e.,
“spin assembly”) utilizes the common coating

technology of spinning a substrate to facilitate
the deposition of materials (74). Although drying
a substrate after immersive LbL assembly can
be achieved through spinning (41), the majority
of spin assembly is performed by either casting
the solution onto a spinning substrate (42) or
casting the solution onto a stationary substrate
that is then spun (43). Spinning quickens the
assembly process considerably, allowing for lay-
ers to be deposited in ~30 s due to the various

Table 1. Selected LbL assembly technologies and properties arising from using each technology. The table is intended to provide a general overview and
is not exhaustive. NR indicates not reported in selected references. [lllustration credit: Alison E. Burke and Cassio Lynm]

—

'NANOFILM PR:
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LbL ASSEMBLY Substrates Substrate Layer materials Time per Automated  Layer Roughness, Layer
TECHNOLOGY sizes* layer (current status) thickness, nm’ nm structure
Immersive 10 nm-1m 10s-12h <1-15 1-20 Interpenetrated
/,/ Dipping @2, 25) Planar 1-100 mm Polymers, colloids ~ 10-30 s (32) or Yes 1-2(25,26) 1-10 (44, 49)
4 ‘\ 10-20 mint (26)
Dewetting (8) Planar 1-10 mm Polymers, colloids§ 30-60 s (8) No 1-2(8) NR
Roll-to-roll (9) Flexible planar 100 mm-1 m Polymers 2-5min (9, 34) Yes 1-15(9, 34) 15-20(9, 34)
Centrifugation (5, 6) Particulate 10 nm-10 pm Polymers, colloids 20+ min|| (5, 6) No 1-2 (5, 10) 3-10(23, 94)
Calculated saturation Particulate 100 nm-1 pm Charged polymers ~ 5-10 min (39) No 1-2 (39) NR
(12, 37)
Immersive immobilization  Particulate 100 nm-1 pm Polymers 40-50 min (33) Yes <133 NR
33)
Creaming (77) Emulsion 10 nm-1 pm Polymers, colloids  0.5-12 h (71, 36) No 1-7 (36,38) NR
Spin 1-100 mm 10 s-5 min <1-2 1-10 Stratified
é
4 .Spin (14, 42, 43) Planar 1-100 mm Polymers, colloids ~ 10-60 s (43) Yes <1-2 (42) 1-10 (44, 46)
S——
High gravity (15) Planar 1-10 mm Polymers, colloids 20 s-5 min (75, 49) No NR 1-2 (49)
Spray 10nm-10 m <1s-24h <1-15 1-10 Stratified
\ Spray (76, 52) Planar 1mm-10m Polymers <1-30s (59) Yes <1-5 (16, 57) 1-10 (57)
- ) Atomization (77) None 10-100 nm Charged polymers  12-24 h (17) No 5-15(17) NR
Spray immobilization (63)  Particulate 10-100 nm Polymers 5-10's (63) Yes 2-4 (63) NR
Electromagnetic 10 nm-100 mm 1 s-20 min 1-20,000 10-30 Stratified
I*'[ Electrodeposition (78, 20, Planar 1-100 mm Polymers, colloids  1s-20 minT (65, 77) No 2-20,0001  10-30 (66, 70)
) 67,73 (20, 67, 71)
, I" [ Magnetic (79, 76) Planar and 10nm-100 mm  Polymers, colloids ~ 15-20 min (79, 76) No 1-2 (19,75 NR
Particulate
Electro-immobilization (73) Particulate 10 nm-1 ym Charged polymers ~ 15-20 min (13) No 2-3(13) NR
Fluidic 100 nm-100 mm 10 s-45 min <1-3 1-11 NR
@Micmﬂuidic planar (22) Planar 10 um-100 mm  Polymers 1-15 min (80, 81) Yes <1-3 (83, 84) 1-10 (80, 84)
Microfluidic particulate Particulate 100 nm-10 pm  Polymers 10-60 s (96-98) Yes 1-3(96,97) NR
(96-98)
Fluidized bed (23) Particulate 1-10 pm Polymers 3-5min (23) No 2-3(23) 9-11 (23)
Fluidic immobilization (86, Particulate 100 nm-1 pm Polymers, colloids ~ 5-45 min (86, 87) No 1-2 (87) NR
87)
Vacuum/filtration (27) Particulate 100 nm-1 pm Polymers 10-20 min (95) Yes 1-2 (94) 5-10 (94)
and fragile™

*Typical order of magnitude substrate sizes are indicated. Larger or smaller substrate sizes are possible.

TTypical thicknesses per layer for linearly growing

films are indicated. Per-layer thicknesses for exponentially growing films vary widely, given the nonlinear growth profile. fTime with or without agitation,
respectively. §Dewetting can make use of materials that are usually difficult to layer (e.g., materials with low charge or with low surface

contact).

substrates, such as mammalian cells, can be layered using fluidic filtration.
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lICentrifugation processing time is highly variable due to manual pipetting and resuspension steps.

Y Thickness is dependent on time. **Fragile
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forces governing the process (43). Furthermore,
spin assembly allows for automation and the coat-
ing of substrates up to 10 cm in diameter using
commercially available spin coaters (44, 45). How-
ever, standard spin coaters are generally designed
for flat surfaces and are not amenable to the com-
plex shapes accessible to immersive assembly.
Spin assembly typically results in more homoge-
nous films compared with immersive assembly.
This is because assembly is driven by a collection
of forces including electrostatic interactions, which
cause the adsorption and rearrangement of poly-
mers, and centrifugal, air shear, and viscous forces,
which cause desorption of weakly bound poly-
mers and dehydration of the films (43). These
forces are also the reason why spin assembly
can be orders of magnitude faster than immersive
assembly. The salt concentration of the polymer
solution has a larger effect at higher spin speeds,
meaning that electrostatic forces play a greater
role at low ionic strength, and shear forces domi-
nate at high ionic strength (46). These shear

forces produce thinner, highly ordered films with
specific layer interfaces when compared with im-
mersive assembly, which produces thicker inter-
penetrated films (47). Specifically, the thickness
for spin-assembled polymer films is generally
linked to the spin speed, with higher speeds lead-
ing to thinner films (42). When depositing col-
loids, the forces experienced during spinning
lead to a monolayer of colloids, whereas standard
immersive assembly often leads to a pseudo-
monolayer in which the substrate is not fully
coated (43, 48). A comparison study of the dif-
ferences between automated immersive assem-
bly and automated spin assembly found that
immersive-assembly prepared thicker, rougher
films, whereas spinning resulted in thinner,
smoother films (44). The films differed visu-
ally, as the spin-assembled films were transpar-
ent because of their distinct-layer stratification,
and the immersive-assembled films were opaque
due to their inhomogeneous, interpenetrated lay-
ers (Fig. 3). The contact angle and the relative

A Creating different nanofilm properties using immersive vs spin LbL assembly
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Fig. 3. Comparison between immersive and spin assembly. (A) Schematic comparison with layers
of different materials. (B) Comparison between an immersive-assembled film (left) and a spin-
assembled film (right). Films are made of hydrophobically modified poly(ethylene oxide) and poly(acrylic
acid). [Adapted with permission from (44). Copyright 2008 American Chemical Society.] [lllustration

credit: Alison E. Burke and Cassio Lynm]
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concentration of polymers were consistent across
all bilayers for spin-assembled films, whereas
immersive-assembled films became rougher with
time, giving varying contact angle and relative
concentration ratios between the two constitu-
ent layers (44). Another study, which compared
spin assembly and immersive assembly, showed
that clay nanocomposites in spin-assembled films
have a higher degree of orientation (45). How-
ever, one issue that can result from spin assem-
bly, which is not a concern for other assembly
technologies, is that at higher ionic strengths of
polymer solution, and also at lower spin speeds,
the films can be thicker where the solution was
cast when compared with the edges of the sub-
strate (42, 46).

In a special case of spin assembly, the sub-
strate can be placed in a closed container with a
polymer solution or a colloidal dispersion paral-
lel to the axis of rotation (rather than perpendicu-
lar). Upon spinning, centrifugal force pushes the
layer material directly onto the substrate rather
than across the substrate, hence the name “high-
gravity assembly” (15). This allows for improved
film deposition and uniformity, especially at low
polymer concentrations, because the rotation
and increased turbulence lower the thicknesses
of both the laminar layer and the diffusing layer
around the substrate. The adsorption equilibrium
can be reached at least five times faster than im-
mersive assembly and is controllable by the spin
speed. Furthermore, polymer combinations that
grow exponentially using immersive assembly also
grow linearly using this technology. Similarly,
the roughness is much lower (~2- to 10-fold) for
LbL films assembled in this way (49).

Spin assembly typically produces substantially
more organized films and multilayers than im-
mersive assembly, which has made it a useful
tool in preparing optical coatings with controlla-
ble and homogenous color (14) and for preparing
transparent films (44). Similarly, spin assembly is
useful for preparing LEDs with higher luminance
than immersive assembly (4I). A primary limita-
tion for spin assembly in terms of application is
that it is limited to coating small planar sub-
strates, as increasing the substrate size requires
higher spin speeds. Furthermore, spin coating
of nonplanar surfaces is complicated.

In summary, spin assembly uses rotating sub-
strates to deposit layers and remove excess coat-
ing material. Spin assembly typically produces
thinner, more organized, and more stratified
multilayers than does immersive assembly, and
the process can be much faster. The spin coater
needed for assembly is commonly accessible in
many research environments and even some in-
dustrial settings, such as with the robotic wafer
processing common in the semiconductor indus-
try, which could facilitate translation from the
laboratory to real-world applications. Further-
more, depositing multilayer films on nonflat
surfaces, or even flat but rough surfaces, can be
challenging due to the shear forces involved with
film assembly. Nevertheless, the film and process
properties arising from spin assembly, includ-
ing smooth films assembled in a relatively short
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time, continue to make this method an attract-
ive choice.

Spray assembly

Spray LbL assembly is another assembly cat-
egory, where films are assembled by aerosoliz-
ing polymer solutions and sequentially spraying
them onto substrates (16). Although spraying air
has been used to dry films during LbL assembly
to reduce contamination (and align carbon nano-
tubes) (50), here we discuss spray assembly solely
in the context of layer deposition. Standard spray
assembly is much faster (as quick as ~6 s per layer)
than immersive assembly (51) and approaches
an industrial level far surpassing that of spin
assembly (52, 53). Vacuum can also be used to
further speed up the process by minimizing the
lag time between spraying and washing, and
vice versa, and to facilitate the spray coating
of three-dimensional (3D) objects like mem-
branes (54).

In spray assembly, the film properties—such
as the morphology, uniformity, chemical compo-
sition, and selective membrane properties—can
be tailored to be similar to those prepared by im-
mersive assembly, with the film thickness influ-
enced by suspension concentration, spray flow
rate, spray duration, resting duration, whether
or not the substrate is washed and for how long,
and whether the solution is sprayed vertically or
horizontally (16, 51, 55-57). This control arises
from the two main forces governing the spray
assembly process, namely, bulk movement in the
actual spray and random movement in the liquid
film (56). The random movement in the liquid
film allows for polymer rearrangement and gen-
erates much higher convection close to the sub-
strate, allowing for improved deposition. This is
because of the submicron thickness of the liquid
film at the substrate interface and because of the
speed at which the spray contacts the substrate
(16, 56). Washing the substrate generally produces
thicker films than leaving the substrate unwashed,
due to polymer rearrangements during washing
(561). Like spin assembly, the films resulting from
spray assembly have more distinct layers in com-
parison to immersive assembly (16, 53).

Spray assembly has also been combined with
other technologies to leverage technology-specific
advantages and automate the assembly process.
For example, a disadvantage of spray LbL assem-
bly is that the obtained films may not be homo-
geneous due to the effects of gravity draining,
causing increased deposition in the vicinity of the
solution drips, and because of irregular patterns
caused by the spray nozzles at certain distances
(51, 57). To address this problem, rotating the
substrate during spray assembly allows for the
preparation of more homogeneous films and
subsecond spray times for each layer (56, 58, 59).
By spraying rotating substrates, a majority of
the polymer added to the substrate is adsorbed.
In comparison, the vast majority of polymer re-
mains in the coating solutions after immersive
assembly. Therefore, applicable concentrations
roughly 10 to 50 times less than those required
for immersive assembly can be used for spray
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assembly on rotating substrates (55, 59). Larger
3D substrates, such as tubular membranes, can
also be coated by rotating the substrate during
spraying (60). A further improvement has been
the computer-aided automation of spray assem-
bly to reduce manual processing (58, 60). Similar
to the use of automated immersive assembly on
QCM chips, the use of QCM chips for automated
spray assembly enables feedback loop control
and tracking of real-time film growth (6I). Auto-
mated spray assembly has also been combined
with roll-to-roll processing for coating industrial-
size substrates (i.e., substrates that are tens of
meters long) (62). Roll-to-roll spray assembly can
also be used to coat particulate substrates with
multilayer films by performing spray assembly
on particulate substrates immobilized on top of
a dissolvable surface (63).

A stand-alone spray assembly technology for
coating particulate substrates uses surface acous-
tic waves of 1 to 10 nm in amplitude to atomize
polymers and cargo (I7). As the atomized droplets
move through the air, the solvent evaporates and
the polymer condenses into particle form, result-
ing in the first atomized solution becoming the
template for subsequent coatings, with ~1000 car-
riers produced from each microliter of solution.
The particles are dialyzed to remove excess poly-
mer, added to a solution of oppositely charged
polymer, and then re-atomized to coat the par-
ticles. This process can be repeated for multi-
layer assembly; however, the dialysis process
increases the processing time of this technology
to ~24 hours for each layer.

Spray assembly has found use for a wide vari-
ety of applications because it can be used to coat
industrial-scale substrates with relative ease (62)
and is not limited to planar substrates (54, 60, 63).
Spray assembly has been used to prepare flame-
retardant films over cotton cloth, where it was
shown that spraying on vertically oriented sub-
strates produced superior flame-retardant films
compared with both spraying on horizontally
oriented substrates or dipping (57). Clothing ma-
terial was also coated with spray assembly to
control air flux and provide chemical protec-
tion, potentially for use with military uniforms
(54). Like other assembly technologies, spray as-
sembly has been used to prepare antireflective
coatings (61), and similarly, car tinting with struc-
tured coloring to reduce heating from infrared
light (62). Membrane tubes could also be coated
to improve the separation of organic dyes from
water (60). Because the structure of the films can
be controlled at the nanometer-level by the spray
time, spray assembly can be used to control con-
ductance in thin films in ways that are not avail-
able to other assembly technologies (59). Spray
assembly has been used to prepare particles to
examine cellular uptake of different coatings
and aspect ratios of particles (63) and for gene
delivery in vitro (7). Spray assembly has found
use in diverse applications and industry because
it offers rapid assembly times and is amenable
to both automation and scale-up.

In summary, spray assembly produces multi-
layer films by aerosolizing coating solutions and

spraying them onto the substrate. The resulting
films are typically well organized with distinct
layers. Spray assembly is a quick and easy meth-
od to coat large or nonplanar substrates, although
immersive assembly remains the method of choice
for coating complex 3D substrates. Spray assem-
bly is one of the most highly relevant technol-
ogies for industrial applications, as it is already
widely used in industry.

Electromagnetic assembly

Electromagnetic assembly is based on the use of
an applied electric or magnetic field to effect lay-
ering, such as by coating electrodes in polymer
solutions or by moving magnetic particulate sub-
strates in and out of coating solutions (I8, 19). The
former, commonly referred to as electrodeposi-
tion, is a well-established technology for coating
materials using an applied voltage in electrolytic
cells. In the standard electrodeposition setup,
two electrodes are immersed in polymer solution,
then an electric current is applied. The electrodes
are then washed and placed into solution of an
oppositely charged polymer; the polarities of the
electrodes are reversed, and the process is re-
peated (64). Electrodeposition can be used to
rapidly assemble ions, polymers, and colloids in
much less time than in immersive assembly (I8).
For example, bimetallic mesoporous LbL films
can be prepared by electrodeposition, with the
electrodeposition time determining the layer
thickness at ~1.5 nm/s (65). In another setup, the
substrate can be placed between the two elec-
trodes, allowing for planar substrates to be coated
(66), or even immobilized particles (13). This tech-
nology results in films roughly twice the thickness
of those resulting from centrifugation-based as-
sembly. Electrodeposition can also use higher
voltages, upwards of 30 V (13, 66); however, the
assembly process for immobilized particles can
take as long as 15 min per layer (I3).

The thicknesses of the electrodeposited films
are directly related to the voltage used during
assembly, with the optimum voltage for achiev-
ing the thickest films dependent on the pH of
the polymer solution (67). Higher voltages can
cause desorption of the film as the electrode
(i.e., the substrate) begins to repel the previously
deposited layer. Generally, pH values lower than
the pK, (where K, is the acid dissociation con-
stant) of the polymers need lower voltages to
reach peak thickness, and that peak thickness is
also larger than the peak thickness at higher pH,
closer to or above the pK, of the polymers. How-
ever, if the voltage is raised high enough, a sec-
ondary peak thickness can be reached, allowing
for the assembly of films at pH values otherwise
difficult to grow using other technologies (67).
The reason for this “valley” in thickness is that
at high voltages, the electrolysis of water at the
electrode plays a bigger role in hindering poly-
mer adsorption; however, at even higher volt-
ages (>3 V) the electrostatic interaction between
the polymer and electrode exceeds any hin-
drance due to electrolysis (67). For example,
polymer-enzyme films are roughly twice as
thick when assembled at an optimal voltage of
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1.2 V, compared with using lower or higher vol-
tages (below 3 V) (68). These studies show that
electrodeposition is similar to other LbL assemb-
ly technologies in the sense that the pH of the
polymer solution, and therefore the configura-
tion of the polymer itself, is crucial in controlling
film thickness.

At higher voltages, electromagnetically as-
sembled films are more interpenetrated than
immersive-assembled films, which is in contrast
to the highly stratified films prepared at lower
voltages (66). When forming polymer-polymer
films, the refractive index does not change sub-
stantially during film growth in a flow cell under
an electric current, suggesting a more homoge-
nous deposition than in immersive assembly
(69). Similarly, polymer-colloid films show high
organization, as the refractive index decreases
and transmittance increases when assembling
films under higher voltages (70). Correspond-
ingly, electrodeposited enzyme-polymer films are
more uniform than immersive-assembled films,
with 90% coverage of the substrate versus ~50%
coverage, respectively (68). Because of this stratifi-
cation and high surface coverage, electrodeposi-
tion allows for control over the spacing between
layers (68).

Electrodeposition can also be achieved by
using local effects at the electrodes, such as in-
ducing redox reactions or changes in pH. The
pH of the solution near the anode and cathode
changes markedly from bulk solution to lower
and higher pH values, respectively (71). The low
pH near the anode can induce polymer deposition.
However, this pH-induced electrodeposition is
fairly limited, as only a few bilayers can be de-
posited (using materials such as alginate and
chitosan) because the layers become too thick
(tens of micrometers) for the electric current to
penetrate, resulting in no pH change and there-
fore no deposition. Using a similar principle,
covalently stabilized films can be prepared by
generating copper(I) from copper(II) in situ
at the electrode (i.e., the substrate) for cross-
linking azide- and alkyne-containing polymers
with copper-catalyzed “click” reactions (20).
Polymers containing electrically sensitive click
groups can also be electrocoupled, allowing for
500-nm-thick transparent, and therefore strati-
fied and homogenous, films to be prepared in
~30 min (72). One-pot synthesis can be per-
formed using the same basic principles by
switching between oxidative and reductive reac-
tions by alternating the voltage, allowing for wash-
free assembly using electropolymerization (73).

Magnets, rather than electric currents, can be
used to assemble LbL films on sensitive partic-
ulate templates, such as emulsions (74), or small
templates difficult to pellet through centrifuga-
tion, such as sub-10-nm iron oxide nanoparticles
(19). Template particles containing magnetic nano-
particles can be separated from the polymer
solution using a magnet, which, similar to the
filtration method, allows for nearly 100% of
the particles to be recovered in a centrifugation-
free LbL assembly process (75). Magnets or an
external field can also be used to orient layered
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magnetic nanoparticles on a planar substrate so
that a subsequent layer of nanoparticles can de-
posit more rapidly and in an oriented fashion
(76). This technology uses standard immersive
assembly for the deposition of positively and
negatively charged magnetic nanoparticles with
application of a magnetic field between depo-
sition steps. Therefore, the thickness does not
increase in relation to standard immersive as-
sembly; however, the absorbance of the film in-
creases with application of the magnet, suggesting
increased packing (76).

Electromagnetic assembly has found use in
several different applications, as it can be used to
form LbL films with compositions that are not
readily assembled using other technologies. Bi-
metallic films of Pt and Pd layers have Brunauer-
Emmett-Teller surface areas of ~40 m> g~ and
therefore exhibit enhanced electrochemical activ-
ity in the methanol oxidation reaction, compared
with single-layer films (65). Antireflective coat-
ings can be prepared by adjusting the refrac-
tive index of the films by assembling the films at
different voltages (70). Biological applications have
also been explored, as biocompatible coatings
can be formed using electromagnetic assembly,
with in vitro tests confirming negligible cyto-
toxicity (71). Bienzyme films with bioelectric cata-
lytic properties have higher surface coverage, and
therefore activity, when compared with tradi-
tionally prepared films (68). The stratification of
the assembled films is also conducive toward
high-performance photoelectric devices (72) and
separation membranes (66). Hollow polymer
capsules (from micrometers to sub-100 nm in
diameter) can also be prepared using electro-
deposition on immobilized particles (13).

In summary, electromagnetic assembly uses
electric or magnetic fields, typically in the form
of electrodes in polymer solutions or magnetic
particulate substrates, to deposit films. Electro-
magnetic assembly can exploit current-induced
changes in pH or redox-reactions to effect film
assembly, thus using a driving force substantially
different from that of the other main assembly
categories. Generally, electromagnetic-assembled
films are thicker and more densely packed than
films prepared using other LbL assembly meth-
ods (13, 68). Electromagnetic assembly is still not
as common as some of the other technologies,
and even though it requires special equipment
and expertise, it does offer a different approach to
multilayer film assembly (e.g., through magnetic
handling of substrates and materials or through
electrically induced assembly), thereby providing
alternative opportunities for assembling films.

Fluidic assembly

Fluidic assembly can be used to deposit multi-
layers with fluidic channels, both by coating the
channel walls and by coating a substrate placed
or immobilized in a fluidic channel (77). The gen-
eral method involves using pressure or vacuum
to sequentially move polymer and washing solu-
tions through the channels, which can be fluidic
components, such as tubing or capillaries, or
designed microfluidic networks (78, 79). Flow-

chamber-based QCM is a common fluidic assem-
bly technology used for investigating thin-film
properties and multilayer growth by providing
crucial real-time information (22). Higher con-
centrations of polymer solution typically yield
thicker films (79), with the contact time rather
than the flow rate as the crucial factor deter-
mining the amount of adsorbed polymer under
flow (80).

Fluidic assembly is typically implemented using
a pump, capillary forces, or spinning to trans-
port the liquid through the channels, although
pipetting and static incubation can also be used.
However, fluidic assembly strongly resembles
immersive assembly when polymer solutions
are allowed to remain in static contact with the
substrate for more than 10 min (81, 82). Polymer
and washing solutions loaded into channels with
a pump or vacuum can deposit ~1.5-nm-thick
layers in 5 to 10 min (83). Capillary forces can
also be used to pull polymer solutions through
microfluidic channels by placing droplets of
solution at fluidic inlets, followed by spinning
the substrate to remove the solution, allowing for
~1.2-nm-thick layers to be deposited in less than
2 min (84). Fluidic layering based on capillary
forces is easy to implement, as capillary action
does not require external active components,
but it is not suitable for larger volumes or when
dynamic control over the flow rate is needed.

Fluidic devices and perfusion chambers can
also be used to achieve region-specific fluidic as-
sembly or to perform fluidic assembly on more
complicated 3D structures. For example, complex
automated microfluidic devices can be used to as-
semble hundreds of layers in parallel using cap-
illary flow and vacuum to fill and empty multiple
channels (85). This enables the high-throughput
screening of film libraries using small quantities
of materials, as only a droplet is needed to fill a
single microchannel. Region-specific films can
be coated on substrates by affixing a geometric
chamber over the substrate and then flowing
the solution through the chamber and over the
substrate (80). Perfusion chambers can be used
for fluidic layering on complex 3D substrates such
as sensitive biological substrates (like arteries),
which must remain constantly hydrated during
layering (86). Similarly, perfusion chambers can
be used to hold agarose that contains immobilized
particles for fluidic assembly (87). This technology
not only allows for the deposition of polymers but
also for the deposition of larger cargo, such as
gold nanoparticles or liposomes, and produces
films with nearly identical thickness to those pre-
pared by standard centrifugation-based assem-
bly (87).

Vacuum is typically used with other assembly
technologies, such as spray assembly, or to re-
move the solution from channels in fluidic as-
sembly, but it can also be used to form multilayers
in a macrofluidic-type assembly, especially on un-
usual substrates like aerogels. Aerogels can be
functionalized using vacuum assembly by pour-
ing solutions of conducting polymers, biomole-
cules, or carbon nanotubes from the top and
applying vacuum to pull these solutions down
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through the aerogel (88). Vacuum assembly
can also be used to deposit materials, such as
reduced-graphene oxide, that would otherwise
pose a challenge to the creation of uniform multi-
layers (89). For particulate substrates, vacaum as-
sembly can be performed using separating filters,
down to 200 nm in pore size, for centrifugation-
free layering (21, 90). Vacuum is not applicable
for all sensitive templates; however, for template
particles including emulsions (91), cell islets (92),
or calcium carbonate nanowires (93), a slight
vacuum (~100 mbar) can facilitate the layering
process (2I). Less than 3% of the particles are lost
during assembly using an optimized procedure,
far less than with the calculated saturation-
based method, where ~50% can be lost, or the
centrifugation-based method, where more than
80% can be lost at high layer numbers (21). This
combined filter-and-vacuum assembly technol-
ogy vyields a layer thickness of ~1.3 nm and a
surface roughness of ~5 to 10 nm, which are both
similar to those prepared via centrifugation-based
assembly (94). A filtration setup has also been
automated for coating cell islets, using a feed-
back loop for evacuating the fluid from the re-
action chamber, thereby reducing the manual
handling time by ~60% (95).

Like vacuum assembly, fluidic assembly is not
restricted to planar substrates and is a viable
alternative for centrifugation-free assembly on
particulate substrates (96-98). Many fluidic as-
sembly approaches coat emulsions or liquid crys-
tals, as these materials are well studied in the
fluidics field. Generally, the coating and washing
solutions are deflected past the flow of particles
by using physical gaps smaller than the particles
so that the flow can enter perpendicular (96)
or parallel to the particle flow stream (97). For
fluidic assembly in parallel flow systems, larger
template particles (~50 um in diameter) are nec-
essary, as they can be deflected in a zig-zag pat-
tern using solid pillars at a ~45° angle to three
parallel laminar flow streams: solution A, wash-
ing, and solution B. This gives a layer thickness
of ~2 to 3 nm (97). A similar technology can be
used to coat 15-um beads with avidin and biotin,
where higher deflection angles have a high cor-
relation to failure rates, with angles of 1° optimal
for a failure rate of virtually zero (99). Instead of
pillars, specific geometries can be used to catch
emulsions for the fluidic assembly of lipid layers
(98). For coating lipid particles with polymers,
tangential flow filtration can be used as a type
of expedited dialysis for removing excess poly-
mer solution (100). To coat sufficiently large
and/or dense particles, a setup based on fluid-
ized beds can be used. This allows for assem-
bly that is ~eight times faster when compared
with centrifugation-based assembly and produces
films twice as thick (23). In this instance, the
force of the washing or polymer solution lifting
the particles is balanced against the force of
gravity sedimenting the particles, resulting in a
fluidized bed where washing and polymer solu-
tions can be pushed past the particles. A similar
setup can be used to coat larger (>100-um) par-
ticles in packed columns, although these beds do
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not need to be fluidized due to the large particle
size, and gravity rather than a vacuum or pump-
driven fluidics can be used to pull the coating and
washing solutions through the column (7).

Numerous applications have been introduced
during the process of developing technologies
for fluidic assembly. Many applications, such
as improved capillary electrophoresis, are real-
ized inside capillaries (81). Fluidic assembly can
also be used to engineer complex flow patterns,
such as having flow in opposite directions in the
same capillary, simply by changing the outer
coating of the capillary walls and generating
flow with an electric current (82). Fluidic assem-
bly is not limited to planar substrates: For ex-
ample, multilayer coatings can be prepared on
aerogels, resulting in improved compressive
strength, wet-state super elasticity, fluorescence,
and mechano responsive resistance, while also
creating high charge-storage capacity (88). Dam-
aged aortic porcine arteries can be repaired ex
vivo with fluidic assembly, to protect the artery
against unwanted blood coagulation, as well as
to facilitate healing (86). Similarly, catheter tubing
can be coated with antifungal multilayers to re-
duce fouling (78). Chromatography beads coated
with multilayers of particles increase the surface
area of the beads, thereby improving chromatog-
raphy (7). Although fluidic assembly is typically
performed on larger particles (tens or hundreds
of micrometers in diameter), smaller particles
(below ~5 um in diameter) can be coated and
loaded with functional cargo for potential drug
delivery applications by combining microflu-
idics with immobilization (87). Fragile particu-
late substrates like emulsions can also be coated
with lipids, using fluidic assembly for the gen-
eration of synthetic cells (98). Neuronal cells can
be patterned with fluidic assembly (83), and cell
islets can be coated to improve robustness, allow-
ing for in vivo transplantation (92, 95). Fluidic
assembly functions as a valuable tool for coating
sensitive particulate substrates, like mammalian
cells, that may be damaged using other technol-
ogies, such as during handling in centrifugation-
based assembly.

In summary, fluidic assembly provides the
means to assemble multilayers on surfaces not
easily accessible to other methods (e.g., inside cap-
illaries), provides new ways for region-specific
patterning (e.g., by masking a surface with a
fluidic channel), and increases the industrial
capacity of multilayer assemblies (e.g., through
parallelization of film assembly and decrease
of reagent consumption). Although the special-
ized equipment and expertise required to set up
(micro)fluidic systems can complicate the use of
fluidic assembly, these advantages make it at-
tractive for many applications.

Challenges both big and small

Over the past two decades, LbL assembly has un-
dergone an explosive growth in usable materials
and substrates. When taken together with all of
the different assembly technologies available, it
becomes obvious why LbL assembly is prevalent
across a broad spectrum of disciplines. Despite

this extensive toolbox, relatively few multilayer
films have had widespread impact outside of
research environments. One focus for industrial
applications is the identification of reliable, sca-
lable, and resource-effective assembly processes,
although this may require different approaches
for macroscopic substrates and for microscopic
particulate substrates.

For macroscopic substrates, improved high-
throughput assembly methods for conformal
coatings will play a key role. Immersive and spray
roll-to-roll assembly are industrially relevant but
only readily applicable to flexible planar substrates;
therefore, innovation is needed in systems that
can be easily scaled for coating large or numerous
3D macroscopic substrates. Similarly, reducing
material waste during the coating process re-
mains important, especially for valuable coating
materials like biomolecules and custom polymers.
Another challenge for films intended for in vivo
biomedical application, such as drug delivery and
tissue engineering, is ensuring sterility of the
product. This is typically achieved through steri-
lization (heat, ultraviolet light, chemical treat-
ment, etc.) just before use, which can affect film
properties and performance. Finally, increasing
the reliability and reproducibility of the films—
for example, by increasing automation and reduc-
ing manual intervention—is crucial for extending
knowledge about film properties and assembly
technologies and also for applying the multi-
layer films in real-life applications.

Similar challenges exist for particulate sub-
strates. One crucial difference is that several
particulate assembly methods depend on cen-
trifugation, which remains difficult to scale or com-
bine with minimal-intervention high-throughput
assembly. Furthermore, yield and size ranges
need to be specified for the various technolo-
gies, as these details are often not determined.
Detailed film properties (such as layer interpen-
etration, layer density, film stability or respon-
siveness, and permeability) that have primarily
been studied on planar substrates also need to
be investigated so that further comparisons be-
tween planar and particulate substrates can
be drawn. Altogether, these challenges are not
trivial and require focused efforts to overcome;
they are also not unique to the field of LbL as-
sembly. One way to address these challenges is
to continue to be open and look for solutions in
new and sometimes unexpected areas, both in
neighboring and more distant fields; this has
underpinned much of the technological innova-
tion in LbL assembly.

Opportunities: Thinking outside the box

Layer-by-layer assembly is a firmly established
technology and shows great promise in multi-
ple, diverse fields. Much of the development up
until now has focused on using new molecular
driving forces for film assembly, thus enabling the
use of a suite of substrates and layer materials.
However, this enormous potential still remains
largely limited to small-scale research settings
and requires technological and methodological
innovation. Despite a surge of new technologies,
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many being recent developments, unmet chal-
lenges still remain, both for harnessing the
specific strengths of different technologies for
particular applications and also for develop-
ing new and improved technologies.

Although much work has been undertaken on
establishing new assembly technologies, only a
few studies have chosen a specific assembly tech-
nology for the material properties generated (e.g.,
stratification, density, roughness) rather than
the processing properties used (e.g., ease-of-use,
material and time savings, lowered involvement,
larger batches). For example, for applications
where electrical conductivity is important (such
as fuel cells and batteries), the conductivity of
an immersive-assembled film can be superior
to that of spray-assembled films, which can be
explained by differences in the interlayer orga-
nization of the constituent conductive layer ma-
terials (interpenetration versus stratification) (59).
Conversely, for applications where optical clar-
ity and/or wetting behavior is important, spin-
assembly can allow for an optically transparent
film with well-controlled water-contact angles
to be assembled due to the smooth, stratified
layers formed, whereas an immersive-assembled
film can be translucent and with a contact angle
that drastically changes depending on the num-
ber of layers deposited due to the rough, inter-
penetrated layers formed (Fig. 3) (44). However,
layer structure is only one of the critical film
properties to be taken into account when design-
ing films for specific applications. For example,
the higher surface coverage and layer density
associated with electromagnetic assembly can
allow for electrodeposited enzyme films to have
higher enzymatic activity than comparable
immersive-assembled films (68). Of course, the
layer structure and density are not relevant if
the desired film components cannot be layered,
which can be an issue, for example, when using
materials with low charge density (e.g., reduced-
graphene oxide) or with a low surface area of
contact (e.g., branched nanowires). In such
cases, technologies such as dewetting and
vacuum assembly enable film formation using
constituents that cannot be easily layered using
other technologies (8, 89). These examples dem-
onstrate how the judicious choice of assembly
technology can enable the assembly of new and
improved thin films. As our understanding of the
different technologies and how they compare to
each other increases, so does the opportunity to
let this insight help guide the development of the
next generation of LbL assembled thin films.

It is noteworthy that the assembly technologies
discussed herein were not originally developed
for LbL assembly, and crossover technologies
from other fields will continue to play an im-
portant part for new, and perhaps even revolu-
tionary, developments. One interesting example
involving industrial-scale layering was performed
using a modified car wash for spray assembly on
a full-sized car (10I). Technologies long used in
the pharmaceutical industry, such as methods
used to treat, purify, and concentrate pharma-
ceuticals, may prove transformative for biomed-
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ical applications. Similarly, using everyday objects
like spray-paint cans could revolutionize assem-
bly methods by essentially combining dewetting
and spray assembly for rapid region-specific as-
sembly with little to no material waste and no
washing steps. Other combinations between ex-
isting assembly technologies should also help to
expedite and automate the assembly process.
Along these lines, technologies for assembly on
particulate substrates are expected to continue
to integrate immobilization methods, as they al-
low collections of particles to be treated like pla-
nar substrates, making accessible many of the
planar assembly technologies discussed herein.
Another promising approach for particulate sub-
strates could be to use a type of “sponge” to ad-
sorb excess polymer from solution, thus removing
the need to pellet the particles. In terms of future
developments for applications, it will be im-
portant to understand the interaction between
multilayer films and complex and natural en-
vironments, such as those found in the human
body (40), outdoors, or in seawater. An impor-
tant aspect of this could be the use of functional
substrates capable of compounding the benefits
of different multilayers in a synergistic fashion.
Overall, the future of LbL assembly is bright,
and as the black box of assembly technologies is
slowly illuminated, great potential for innova-
tion and application will be found.
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Technology-driven layer-by-layer assembly of nanofilms
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Thin-film fabrication

The deposition of thin films from multiple materials is essential to a range of materials fabrication processes.
Layer-by-layer processes involve the sequential deposition of two or more materials that physically bond together.
Richardson et al. review some of the techniques and materials that are used to make thin films, including sequential dip
coating, spraying, and electrochemical deposition. Despite the versatility of the methods and the range of materials that
can be deposited, the techniques remain mostly confined to the lab because of challenges in industrial scaling. But
because there is tremendous scope for fine-tuning the structure and properties of the multilayers, there is interest in
broadening the use of these techniques.
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